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Direct numerical simulation is used to study the flow field around an infinitely long circular cylinder
rotating in fluid with no outer boundary. Wall shear stresses and normal pressure fluctuations are con-
sidered with reference to flat, non-rotating geometries to help identify any flow field differences intro-
duced by Coriolis forces. In the present case, Coriolis forces are experienced only by the turbulence
field. The dominant effect is to decrease the streamwise turbulent velocity level relative to the other
two components. A consequential effect is that the two components of wall shear stress fluctuations
become almost equal and spectra for streamwise and spanwise wall shear stress fluctuations become
almost identical. This is a distinctly different behaviour from that of non-rotating flat plate and straight
pipe flows. Instantaneous wall shear stress fluctuations indicate a near wall flow structure similar to that
of other boundary layers with sweeps and ejections. No flow reversals of wall shear stress are indicated. A
good correlation of the wall shear stresses and the turbulent kinetic energy exists for y+ < 10. Budgets of
Reynolds normal stress components illustrate the role played by Coriolis forces in the production and
redistribution of turbulence energies. Wall pressure fluctuations are found to be of much larger spatial
extent than velocity fluctuation scales while the probability density distribution of pressure fluctuations
is almost Gaussian but does display a Reynolds number effect for skewness and Kurtosis. The ratio of rms
pressure fluctuations to mean streamwise wall shear stress follows closely that for flat plate boundary
layer and channel flows.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Rotating circular cylinders are widely used for laboratory
assessment of the effect of fluid velocity on corrosion rates (Gabe,
1974; Gabe and Walsh, 1983; Silverman, 1988; Nesic et al., 1995;
Gabe et al., 1998). Applications can also be found in viscosity deter-
mination devices, biological applications (Haut et al., 2003), deter-
mination of windage losses in rotating machinery and in
desalinators (Wild et al., 1996). Theoretical solutions relating the
mass transfer to the flow around the cylinder are covered in texts
such as Levich (1962), Pletcher and Walsh (1993) and Hanratty and
Campbell (1996). Corrosion rates obtained with the rotating elec-
trode apparatus are transferred to industrial applications in pipe
and duct flows, behind obstacles and for external flows (Levich,
1962; Nesic and Postlethwaite, 1990; Nesic et al., 1995, 1997; Dar-
by et al., 1999; Silverman, 2003). Since the fluid in such situations
is usually of high Schmidt number, typically greater than 1000, the
mass transfer boundary layer, or diffusion layer, is very thin and in
typical boundary layers, lies largely within the viscous sublayer.
ll rights reserved.

: +82 32 868 1716.
This assumption justifies the transfer of mass transfer controlled
corrosion data to other flows on the basis of similar mean wall
shear stress. As has already been shown by Levich (1962), Nesic
and Postlethwaite (1990) and others, this is not a universally cor-
rect process especially in separated flows with downstream reat-
tachment where the mean wall shear stress vanishes at the flow
reattachment point yet mass transfer and corrosion rates in the re-
gion of reattachment do not vanish (Bremhorst et al., 2005).

While many experimental as well as numerical studies exist for
boundary layer flows in channels, in pipes and over flat surfaces
from which the structure of turbulent flow can be deduced, few
studies exist for the rotating cylinder. Theodorsen and Reiger
(1944) are one of the first to give rotating cylinder wall shear stress
for a comprehensive set of experimental data while Pettersson
et al. (1996) and Dierich et al. (1998) report detailed hot-wire ane-
mometer data for flow near a rotating cylinder of geometry similar
to that used for rotating electrodes. Pettersson et al. (1996) and
also Jacobs et al. (2006) attempted to predict the flow field around
the rotating cylinder by application of Reynolds averaged model-
ling but demonstrate only limited success. Kasagi and Hirata
(1975) experimentally studied turbulent fluid motions and heat
transfer in the near wall region of a rotating circular cylinder,
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Nomenclature

D [m] cylinder diameter
f [–] friction factor
Lþs [–] integral length scale in the streamwise direction in wall

unit
Lþz [–] integral length scale in the spanwise direction in wall

unit
R [m] cylinder radius
ReD [–] Reynolds number based on cylinder diameter and the

surface velocity of the cylinder (2R2X/m)
ReR [–] Reynolds number based on cylinder radius and the sur-

face velocity of the cylinder (R2X/m)
Re*

R [–] Reynolds number based on friction velocity and cylinder
radius (u*R/m)

Res [–] Reynolds number based on friction velocity and channel
half width or boundary layer thickness

r [m] radial coordinate
s [m] streamwise (circumferential) coordinate
t [s] time
Uc [m/s] velocity at the cylinder surface (RX)
u [m/s] streamwise velocity component
u+ [–] normalized streamwise (circumferential) velocity com-

ponent (u/u*)
u* [m/s] friction velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw;s=q

p� �

v [m/s] radial (normal) velocity component
w [m/s] spanwise velocity component
y+ [–] normalized distance from the wall (yu*/m)
y [m] distance from the wall
z [m] spanwise coordinate

Greek letters
/ [–] probability density
l [kg/m s] dynamic viscosity
m [m2/s] kinematic viscosity
q [kg/m3] density
sw [Pa] total wall shear stress
sw,s [Pa] streamwise component of wall shear stress
sw,z [Pa] spanwise component of wall shear stress
~X [s�1] angular velocity vector of the cylinder, ~X ¼ �X~k

Superscripts
� time and spatial averaged quantity
0

fluctuating value
? vector notation

Other symbol
h i rms averaged quantity
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and report that these fluid motions consist of the ejection of the
high-speed portion of the fluid near the wall and the subsequent
supply of the low-speed fluid inward to the wall.

Corrosion can also be induced by mechanical damage to the
protective layer such as an oxide of the base metal. Such damage
is well understood when a solid phase is present in the liquid
stream but little is known about mechanical failure due to fluctu-
ating pressure and shear forces and in particular possible fatigue
induced by the associated rapidly fluctuating forces. These forces
are difficult to measure but are readily accessible by computation
using direct numerical simulation (DNS) of the flow equations.
While such calculations exist for straight pipe and flat plate bound-
ary layer flow, comparable data are sparse for the rotating cylinder
where the flow field is known to differ from flat, non-rotating
geometries due to the presence of Coriolis forces (Hwang et al.,
2007). Coriolis forces reduce the streamwise velocity fluctuations
relative to the wall normal and lateral ones, a fact also observed
in parts of rotating channel flows (Launder et al., 1987; Kristoffer-
sen and Andersson, 1993). Consequently, it is of interest to quan-
tify the rotating cylinder wall forces and flow characteristics in
case these lead to different corrosion behaviour on the rotating cyl-
inder relative to that of flat plate boundary layer, channel and pipe
flows. The present paper presents such data for fluctuating wall
shear stress and wall pressure fluctuation for a smooth rotating
cylinder of infinite extent with no outer boundary.
2. Formulation and numerical methods

The geometry, numerical method and parameters are the same
as those used by Hwang et al. (2007) and are repeated here for
completeness. The governing incompressible continuity and
momentum equations in a reference frame rotating at constant
angular velocity ð~XÞ with the cylinder are

~r �~u ¼ 0; ð1Þ
o~u
ot
þ ð~u � ~rÞ~u ¼ � 1

q
~rP þ m~r2~u� 2~X�~u; ð2Þ
where~u, q and m denote velocity, density, and kinematic viscosity of
the fluid, respectively. The last term in Eq. (2) represents the Corio-
lis force. Since the centrifugal force is conservative, it is included in
the pressure term, and does not affect the velocity field (Lezius and
Johnston, 1976). Thus, P in Eq. (2) actually includes not only pres-
sure but also the centrifugal potential.

The governing equations are discretized by using a finite-vol-
ume method on a cylindrical grid system. Spatial discretization is
second-order accurate. A hybrid scheme is used for time advance-
ment; non-linear terms are explicitly advanced by a third-order
Runge–Kutta scheme, and the other terms are implicitly advanced
by the Crank–Nicolson scheme. A fractional step method (Rosen-
feld et al., 1994), is employed to decouple the continuity and
momentum equations. The resulting Poisson equation is solved
by a multigrid method. Details of the numerical algorithm used
in the code follow Rosenfeld et al. (1994).
3. Choice of parameters and boundary conditions

A schematic of the flow configuration under consideration is
shown in Fig. 1 together with the coordinate system employed. A
circular cylinder rotates in the clockwise direction in an open do-
main. The cylinder radius is 0.01 m, and the outer boundary of
the computational domain is located 0.07 m from the axis of rota-
tion. The spanwise size of the domain is 0.024 m at rpm = 200 and
500, and 0.012 m at rpm = 1000. The spanwise length is large en-
ough to contain the longest wavelength of turbulence in the span-
wise direction. A cylindrical grid system is employed, and the
number of computational cells determined by grid refinement
study is 128 � 96 � 256 in the azimuthal (s), radial (r or y) and
spanwise (z) directions, respectively. The minimum grid sizes in
the s and r directions are Dsþmin ¼ 17:8 and Drþmin ¼ 0:09, respec-
tively, for rpm = 500; the grid size in the z direction is Dz+ = 3.3
(Dz+ = 2.9 for rpm = 1000). They are quite small as verified for ade-
quacy by grid refinement. A periodic boundary condition is em-
ployed in the homogeneous spanwise direction. The outer
boundary condition needs special attention. To minimize computa-



Table 1
Mean flow parameters

rpm Uc (m/s) u* (m/s) ReR Re�R
ffiffiffiffiffiffiffiffi
s02w;s

q
=sw;s

ffiffiffiffiffiffiffiffiffi
s02w;z

q
=sw;s

ffiffiffiffiffiffi
s02w

q
=sw;s

200 0.21 0.019 1810 161 0.26 0.27 0.374
500 0.52 0.040 4480 348 0.295 0.295 0.417

1000 1.05 0.072 9050 623 0.32 0.305 0.442
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Fig. 2. Mean velocity profiles in the wall region relative to a reference frame
rotating with the cylinder.
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Fig. 1. Schematic of flow configuration and coordinate system. Here, X is positive.

Table 2
Boundary layer thicknesses for the mean velocity profile at Re�R ¼ 348

d99 d* h H

3.00R 0.20R 0.16R 1.25

1270 J.-Y. Hwang et al. / International Journal of Heat and Fluid Flow 29 (2008) 1268–1278
tional costs, the boundary condition as suggested by Yang et al.
(2003) is employed. That is

ou
or
¼ X; v ¼ 0;

ow
or
¼ 0; ð3Þ

where u, v and w represent the azimuthal, normal and spanwise
velocity components, respectively. This outer boundary condition
enables use of a reasonably small computational domain in the ra-
dial direction. The use of this boundary condition contrasts with the
shear outer boundary which leads to vortical flows in the enclosed
space. The advantage of the present outer boundary condition is
that no shear effects are generated at that boundary. Table 1 shows
the computed mean flow parameters, where Uc and u* denote the
velocity at the cylinder surface and the friction velocity, respec-
tively. ReR is the Reynolds number based on the cylinder radius R
and Uc while Re�R is based on R and u*. As the transitional ReR is
100 (Theodorsen and Reiger, 1944; Gabe and Walsh, 1983), the
flows at all three Reynolds numbers are expected to be fully
turbulent.

To justify the computational domain size, an additional simula-
tion with a larger computational domain (L = 13R, here, L denotes
the radius of the outer boundary) was performed. More grid cells
were added (128 � 128 � 256 in total) such that the original level
of numerical resolution was maintained in the new simulation. The
budgets of Reynolds normal stresses computed with the larger do-
main are almost indistinguishable from those with the original do-
main (L = 7R) thus confirming the adequacy of the smaller
computational domain (L = 7R). In both cases, turbulence almost
completely decays within 3R (y+ � 1000). The adequacy of the
streamwise resolution was checked by performing an additional
simulation with the doubled number of grid cells in the stream-
wise (circumferential) direction and L = 7R. The budgets of Rey-
nolds normal stresses were computed with the finer resolution.
The difference between the two cases is insignificant, confirming
that the coarser streamwise resolution is adequate.
4. Results and discussion

4.1. Mean velocity profiles and boundary layer parameters

Based on the coordinate system rotating with the cylinder,
velocities are relative to the wall with a no slip condition. Hwang
et al. (2007) have shown that in the fully turbulent layer a logarith-
mic velocity profile exists, Fig. 2. The slope is the same as the uni-
versal velocity profile applicable for flat plate boundary layers and
channel and straight pipe flows, Eq. (4), before limiting to the rigid
body velocity profile at larger distances from the cylinder wall

uþ ¼ 2:5 ln yþ þ 5:5: ð4Þ

The logarithmic profile is, however, offset relative to the universal
velocity one due to a thinner wall layer with the constant in the
log law being 2.65 instead of 5.5. The data of Dierich et al. (1998)
are shown replotted in Fig. 2 for the lowest and highest rotational
speeds reported. It is seen that once again a logarithmic region with
the same slope as the DNS data is obtained and lying well below the
universal velocity profile, with the constant 5.5 of the universal
velocity profile being replaced by �0.75.

The values of 99% boundary layer thickness (d99), displacement
thickness (d*), momentum thickness (h), and shape factor (H) at
Re�R ¼ 348 are also presented in Table 2. They were computed as
follows where d99 is normal distance between the cylinder surface
and the y location of U/U0 � 0.99

d� ¼
Z 7R

R
1� U

U0

� �
dr;

h ¼
Z 7R

R

U
U0

1� U
U0

� �
dr;

H ¼ d�=h;

where U = u � rX + U0 with U0 = RX.
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4.2. Mean wall shear stress variation with Reynolds number

One of the more frequently quoted sets of wall shear stress data
and associated correlation is that by Theodorsen and Reiger (1944),
Eq. (5), which is applicable for 1000 6 ReR 6 400,000

1ffiffiffi
f

p ¼ �0:6þ 4:07log10ðReR

ffiffiffi
f

p
Þ: ð5Þ

Friction factor (f) is defined by

sw ¼
1
2

fqU2
c : ð6Þ

Eisenberg et al. (1954) found their experimental data to follow

f
2
� 0:0791Re�0:3

D ð7Þ

for 1000 6 ReD 6 100,000 with Reynolds number, ReD, based on cyl-
inder diameter.

Dierich et al. (1998) present a more limited experimental data
set which lies below the trend of Eq. (5) but approaches this line
as Reynolds number increases, Fig. 3. It is seen in Fig. 3 that there
is a spread of the correlations and that the DNS data are within the
range of experimental data. Reasons why the DNS data may not
fully agree with the experimental data include the differences in
distance of the outer boundary from the cylinder surface, the free
end of the cylinder, possible recirculating flow and experimental
errors. The ability of DNS to simulate an infinitely long cylinder
thus excluding end effects and use of the boundary conditions of
Eq. (3) thus removing the effects of the outer cylinder, are consid-
ered to be the most likely reason for a difference between the
experimental data and the DNS points in Fig. 3. A possible reason
for the Dierich et al. (1998) data differing from the Theodorsen
and Reiger (1944) and Eisenberg et al. (1954) data is that wall
shear stress was obtained from hot-wire anemometer measure-
ments away from the wall by applying the assumption that viscous
effects are negligible so that wall shear stress equals the turbulent
Reynolds stress. Present computations show that even at the high-
est Reynolds number tested, the viscous component remains sig-
nificant up to y+ = 50 which is into the logarithmic layer of the
flow. As Reynolds number decreases, the viscous component will
increase in extent throughout the flow thus giving an increasing
departure from the other two experimental data sets of Fig. 3.
Experimental data given in Pettersson et al. (1996) are not included
on Fig. 3 as they depart significantly from the other data shown
with insufficient details being available to judge their
comparability.
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Fig. 3. Friction factor variation with Reynolds number.
4.3. Streamwise and spanwise fluctuating wall shear stresses

The two components of the fluctuating wall shear stress are de-
fined by

s0w;s ¼ lr
o

or
u0

r

����
r¼R

ð8Þ

s0w;z ¼ low0

or

����
r¼R

; ð9Þ

where the superscript
0
denotes a fluctuating component. s0w;s is that

in the azimuthal or streamwise direction while s0w;z is the fluctuat-
ing component of wall shear stress in the spanwise direction. l is
the dynamic viscosity. Table 1 gives values of rms wall shear stress
fluctuations relative to the mean wall shear stress which is non-
zero only in the streamwise direction denoted by subscript s. The
last column is the vectorial sum of the component shear stress fluc-
tuations. The most noticeable aspect of these data is that the two
components of fluctuating wall shear stress are nearly equal. This
contrasts with the DNS data for a channel (Jeon et al., 1999), who
give the streamwise component as 0.36 and the spanwise compo-
nent as 0.2 giving a ratio of 1.8 and a vectorial sum of 0.412. As wall
shear stress fluctuations are directly related to the streamwise and
spanwise velocity fluctuations near the wall, it is seen from Hwang
et al. (2007) that because Coriolis forces lead to a significant reduc-
tion in the streamwise near wall velocity fluctuations a lower ratio
of the two components of shear stress fluctuations results. Fig. 4
presents comparison of the current rms values of fluctuating wall
shear stress components with those of channel flow obtained by
other authors. It is seen that the difference between the streamwise
and spanwise values is significant in channel flow. However, there
is only a small difference in the current flow. In all cases, the rms
fluctuations increase with approximately the same rate as Reynolds
number increases.

4.4. Spectra of fluctuating wall shear stress components

Spectra of fluctuating wall shear stress components were com-
puted by Fourier transform from the corresponding spatial correla-
tions which are available in Hwang et al. (2007). The resultant
spectra, Fig. 5, differ significantly from those of non-rotating flows
with negligible streamline curvature such as Colella and Keith
(2003) for a flat plate and Jeon et al. (1999) for channel flow. The
production part of the spectrum is similar in shape for both com-
ponents and the drop off to higher wavenumbers is more rapid
than for the flat plate case. Also, the shape of spectra for the two
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components of wall shear stress fluctuations is almost identical for
each direction of separation. This is attributed to the manner in
which the streamwise turbulence intensity is reduced relative to
the other components under the influence of Coriolis forces
(Hwang et al., 2007; Launder et al., 1987), and appears to act like
an anisotropy weakening effect.

4.5. Probability density distributions of fluctuating wall shear stress
components

Probability density distributions were calculated according to
Eq. (10) where subscript x is replaced by s for the streamwise com-
ponent and by z for the spanwise one. n is the number of samples
in the interval denoted by D and N is the total number of samples

/ðs0w;xÞDðs0w;xÞ ¼
n
N
;

/ðs0w;xÞP 0;
Z þ1

�1
/ðs0w;xÞdðs0w;xÞ ¼ 1:

ð10Þ
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Their distributions are shown in Figs. 6 and 7. Corresponding values
of skewness and flatness (Kurtosis) are 0.166 and 2.79 for the
streamwise wall shear stress fluctuation and 0.005 and 3.06 for
the spanwise wall shear stress fluctuation. The spanwise values re-
flect the symmetry about the plane perpendicular to the cylinder
axis. The streamwise values can be compared with those measured
by Colella and Keith (2003) for a towed flat plate of 0.67 and 3.41
φ

-1 -0.5 0 0.5 1
0

0.5
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τ /τ'
w,z w,s
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Gaussian
distribution

-

Fig. 7. Probability density function for spanwise wall shear stress fluctuation at
Re�R ¼ 348.
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Fig. 8. Scatter plot of streamwise and spanwise wall shear stress fluctuation at
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which were shown to be similar to other flat surface geometries.
The significantly lower value of skewness in the present case is
again attributable to the Coriolis effect which was seen to bring
the two components of wall shear stress fluctuations closer to-
gether in magnitude, in spectral behaviour and now also in their
probability densities.

From Fig. 8 it is deduced that the instantaneous streamwise
wall shear stress never becomes negative but the positive value
can exceed twice the mean wall shear stress. The spanwise fluctu-
ation is seen to have some values exceeding the mean wall shear
stress but only very rarely. Similar results were obtained by Colella
and Keith (2003) for the streamwise wall shear stress fluctuation in
a flat plate boundary layer at low Reynolds numbers. Fig. 8 is indic-
ative of the lack of correlation between the two fluctuating compo-
nents as is to be expected from symmetry considerations.

4.6. Characteristics of the instantaneous wall shear stress vector

The instantaneous wall shear stress vector, ~sw, is one of the
mechanical forces which may affect the deposition of protective
films and/or the film removal due to mechanical failure. It is de-
fined by summation of the two wall shear stress component vec-
tors, Eq. (11), while the magnitude is defined by Eq. (12). î and k̂
are the unit vectors in the streamwise and spanwise directions,
respectively

~sw ¼ sw;ŝ iþ sw;zk̂; ð11Þ

sw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

w;s þ s2
w;z

q
: ð12Þ

Fig. 9 gives a plan view of instantaneous wall shear stress vec-
tors. A definite structure can be visualized which has a longer
length scale in the streamwise direction than in the spanwise
one. This structure is similar in appearance to that seen in flat
geometry boundary layers consisting of sweeps and ejections (Hin-
ze, 1975). Consistent with Fig. 8, there is an absence of flow rever-
sals as has been observed for a flat plate boundary layer by Colella
and Keith (2003).

The fluctuating component of the wall shear stress vector can
be analysed with the aid of the following definitions:

~J ¼ s0w;s îþ s0w;zk̂ J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s02w;s þ s02w;z

q
J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s02w;s þ s02w;z

q
: ð13Þ

The probability density of J is given in Fig. 10. The large tail of
the distribution shows that fluctuations up to 1.25 times the mean
shear stress exist. The maximum values of wall shear stress possi-
ble can be seen more clearly from Fig. 11 which is the probability
density of the magnitude of the wall shear stress vector. The distri-
bution is nearly Gaussian with values of up to twice the mean va-
4 5 6

tor plot in the s–z plane at Re�R ¼ 348.
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lue. This may have significant implications when assessing flow re-
lated corrosion. The angle of the wall shear stress vector is given in
Fig. 12. Limits of angles above which flow reversal would be indi-
cated are shown and it is seen that the extreme values of the angle
fall well within these limits. In fact, most vector angles are within
±45�. These results are similar to those of Colella and Keith (2003)
for a flat plate boundary layer.

4.7. Role of the turbulent kinetic energy

When assessing flow assisted corrosion mean wall shear stress
is considered as the primary flow variable as the diffusion layer
generally lies within the viscous sublayer which in turn is charac-
terized by wall shear stress. In turbulent flow the fluctuating wall
shear stress increases the effective wall shear stress determining
mass transfer and hence corrosion. The question then arises
whether it is the fluctuating wall shear stress which matters or
the turbulence level as given by, for example, turbulent kinetic
energy.

The wall normal velocity fluctuation takes on very small values
well before the wall is reached as seen from Fig. 13 which gives the
individual velocity fluctuations in wall vicinity. The streamwise
and spanwise rms fluctuations have the same slope near the wall,
being consistent with the earlier observation that the streamwise
and spanwise rms wall shear stress fluctuations are almost equal
(Fig. 4). Up to y+ = 1,v

0
is negligible and Fig. 14 shows that the mean
of the sum of squares of u
0

and w
0

is nearly identical to twice the
turbulent kinetic energy up to at least y+ = 10. As the fluctuating
wall shear stress components are directly proportional to u

0
and

w
0
, this result shows that rms turbulent wall shear stress fluctua-

tion levels can be readily predicted if accurate predictions of k
within the near wall region are available.

Fig. 15 tests the correlation between ki ¼ 1=2ðu02 þ v02 þw02Þ
and J where ki is the instantaneous turbulent kinetic energy. At
very low y+ a near perfect correlation is seen to exist, however,
as y+ increases, but still at y+� 10, the correlation breaks down
at small values of velocity and wall shear stress fluctuations. This
is probably due to the smaller length scale fluctuations which are
associated with sweeps of low velocity fluid back towards the wall
compared with the larger scale ones associated with ejections of
high velocity fluid that penetrate the whole wall layer. The exis-
tence of such sweeps and ejections has already been demonstrated
by Kasagi and Hirata (1975). The lack of perfect correlation at the
smaller scales on the approximation of 2k � u02 þw02 is, however,
negligible up to at least y+ = 10.

4.8. Linearity of velocity profile and Nernst diffusion layer

Mass transfer models for high Schmidt number fluids often
rely on the mass diffusion layer lying fully within the viscous sub-
layer, that is, within a region where the velocity profile is linear
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(Hanratty and Campbell, 1996). It is of interest, therefore, to
examine and quantify the probability that a linear profile exists
which satisfies the viscous velocity profile u+ = y+ within a given
accuracy. One method of presenting such data is given in Fig. 16
from which it is readily seen that within the viscous sublayer,
y+
6 5, the probability of u+ � y+ is centred around zero but out-

side of the viscous sublayer, the peak departs from zero signifi-
cantly with most occurrences being skewed to below zero. The
latter reflects the curvature of the velocity profile increasing as
(k
i/k

)0.
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Fig. 15. Correlation between the fluctuation of wall shear stress and turbulent
kinetic energy for Re�R ¼ 348: (a) y+ = 0.1 and (b) y+ = 1.0.
y+ increases. The wide spread of u+ � y+ within the viscous sublay-
er reflects the sweep and ejection process described in the previ-
ous section and is consistent with such processes in a flat plate
boundary layer (Hinze, 1975).

4.9. Budgets of Reynolds normal stress components

Budgets of the transport equations for Reynolds normal stress
components are given by

u02 — budget

0 ¼ �2 u0v0
dU
dr
þ u0v0

r
U

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P11

� 1
r

oru0u0v0

or
þ 2u0u0v0

r

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T11

þ m
1
r

o

or
r
ou0u0

or

� �
þ 2

r2 ðv02 � u02Þ
� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D11

� 2
qr

u0
op0

oh|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
P11

þ4Xu0v0|fflfflffl{zfflfflffl}
C11

� 2m
ou0

oh
þ v0

� �2 1
r2 þ

ou0

or

� �2

þ ou0

oz

� �2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e11

ð14Þ

v02 — budget

0 ¼ 4
u0v0

r
U|fflfflfflffl{zfflfflfflffl}

P22

� 1
r

orv0v0v0

or
� 2u0u0v0

r

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T22

þ m
1
r

o

or
r
ov0v0

or

� �
þ 2

r2 ðu02 � v02Þ
� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D22

� 2
q

v0
op0

or|fflfflfflfflfflffl{zfflfflfflfflfflffl}
P22

�4Xu0v0|fflfflfflfflffl{zfflfflfflfflffl}
C22

� 2m
ov0

oh
� u0

� �2 1
r2 þ

ov0

or

� �2

þ ov0

oz

� �2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e22

ð15Þ
(u
+
-y

+
)/y

+
-1 -0.5 0 0.5 10

0.5

1

1.5
y+=0.28

φ

(u+-y+)/y+
-1 -0.5 0 0.5 10

0.5

1

1.5
y+=1.19

φ

(u+-y+)/y+

-1 -0.5 0 0.5 1
0

0.5

1

1.5

y+=4.17

φ

(u+-y+)/y+

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

y+=11.76

φ

Fig. 16. Probability density function of departure from linearity of the streamwise
velocity at Re�R ¼ 348 near the wall.



y+

L
os

s
G

ai
n

0 20 40 60 80

-0.2

0

0.2

0.4

0.6

P11

T11
D11

C11

−ε11

Π11

y+

y+

L
os

s
G

ai
n

0 20 40 60 80

-0.2

0

0.2

0.4
P22

T22
D22

C22

−ε22

Π22

P33

T33
D33

−ε33

Π33

b

c

a

L
os

s
G

ai
n

0 20 40 60 80

-0.2

0

0.2

0.4

Fig. 17. Budgets of Reynolds normal stress components: (a) streamwise, (b) wall
normal and (c) spanwise.

a

b

1276 J.-Y. Hwang et al. / International Journal of Heat and Fluid Flow 29 (2008) 1268–1278
w02 — budget

0 ¼ �1
r

orw0w0v0

or|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
T33

þ m
1
r

o

or
r
ow0w0

or

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D33

� 2
q

w0
op0

oz|fflfflfflfflfflffl{zfflfflfflfflfflffl}
P33

� 2m
ow0

oh

� �2 1
r2 þ

ow0

or

� �2

þ ow0

oz

� �2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e33

: ð16Þ
Fig. 18. Spatial correlations of wall pressure fluctuations, (a) streamwise separation
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The k budget has already been discussed by Hwang et al. (2007)
who noted the effect of the Coriolis components, C11 and C22 in Eqs.
(14) and (15) which affect the production of u

0
and v

0
. C11 is seen as

a loss in Fig. 17a while C22 is seen as a gain in Fig. 17b.
Production of v
0
is seen from Fig. 17b to be negative thus leaving

C22 as the only significant positive term. It is interesting to note
that in fully developed channel and pipe flows, the production
term in the v

0
budget is zero so that this budget component can

only lead to redistribution and dissipation of fluctuation energy
whereas in the present case, an additional mechanism is intro-
duced whereby energy is extracted from u

0
by the C11 term, fed into

the v
0

component only to be returned to the u0 by half of the P22

component through P11. The remaining part of P22 represents neg-
ative production and acts against C22. This process represents an
addition to the process described by Rotta (1962) for turbulent
boundary layers as ‘‘Longitudinal velocity fluctuations exist be-
cause of the simultaneous existence of the Reynolds shear stress
and mean velocity gradient, transverse and lateral velocity fluctu-
ations exist because of the pressure fluctuations, and the Reynolds
shear stress exists because of the simultaneous existence of trans-
verse velocity fluctuations and mean velocity gradient”. Production
of w

0
is dominated by the pressure term, Fig. 17c, except in the wall

region where diffusion also becomes a significant source term.

4.10. Normal surface stresses (wall pressure fluctuation)

Mechanical effects in flow affected corrosion can include nor-
mal surface stresses in addition to the shear stresses discussed
above. Such failure can be due to fatigue of the surface film, espe-
cially if a soft zone exists between it and the solid surface thus
making the protective film pliable. Statistical characteristics of sur-
face pressure fluctuations are therefore required.

The spatial extent of pressure fluctuations as given by azi-
muthal and spanwise correlations, Fig. 18a and b, compared with
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Table 3
Skewness and Kurtosis of wall pressure fluctuation

Re�R Skewness Kurtosis

161 �0.38 2.90
348 0.06 3.05
623 0.24 3.78
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corresponding correlations of the fluctuating velocities available in
Hwang et al. (2007), shows much greater correlation lengths. This
result is to be expected as the wall pressure fluctuations include
not only pressure fluctuations of the nearby scales but also those
due to the very largest scales existing in the flow (Hinze, 1975).

Pressure fluctuation spectra of Fig. 19 were computed from the
corresponding spatial correlations of Fig. 18. Spectra show a dis-
tinct difference relative to the wall shear stress fluctuations,
Fig. 5, in the region of maximum energy contribution. Included in
Fig. 19 are lines representing the (�1) and (�10/3) drop offs found
in flat plate boundary layers attributed to Willmarth and Yang
(1970). The (�1) region represents the energy containing part of
the spectrum and is seen to agree closely with that for flat plate
boundary layers as does the spectral drop off at the higher
wavenumbers.

In Fig. 20, the current rms values of wall pressure fluctuation
are presented together with those of other authors for channel flow
and boundary layer flow. Correlations proposed by Hu et al. (2006)
for channel flow and by Farabee and Casarella (1991) for turbulent
boundary layer flow are also shown. It is seen that the current rms
values are only slightly lower than those for the other flow config-
urations. Hinze, 1975 suggests a ratio of rms of pressure fluctua-
tions to mean streamwise wall shear stress of 3.0 for boundary
layers. The present data lie below this value but like the other data
in Fig. 20, tend toward a value of 3.0 as Reynolds number increases.
Consequently, Coriolis forces in the present flow do not seem to
have an effect on this ratio.

For a statistical model of possible surface damage to corrosion
films, it is necessary to know the distribution of likely pressure
forces which consist of the mean and fluctuating parts. From
Fig. 21 it is seen that the probability density function for the mid-
dle Reynolds number tested is similar to a Gaussian distribution
but the data of Table 3 indicate that skewness and flatness (kurto-
sis) increase with Reynolds number thus indicating increasingly
larger fluctuation extremes.
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5. Concluding remarks

Flow around a rotating circular cylinder such as used for corro-
sion studies has been found to differ from non-rotating geometries
with negligible streamline curvature due to the effect of Coriolis
forces on the turbulent velocity field. Coriolis forces have no effect
on the mean field other than to lower the constant in the logarith-
mic expression commonly used to relate the non-dimensional
velocity profile to distance from the wall. The slope of this expres-
sion is still the inverse of the von Karman constant when velocity is
expressed relative to the moving wall.

The turbulent velocity field is changed by a reduction in the
streamwise velocity fluctuation relative to the other two fluctuat-
ing velocity components. The net effect is to make the streamwise
and spanwise fluctuating wall shear stresses nearly identical in
magnitude, spectral behaviour and probability densities. Budgets
of velocity fluctuation energy show the role played by Coriolis
forces which lead to radial transfer of momentum resulting in an
energy production term in the Reynolds stress budget for the radial
velocity component which does not exist in non-rotating geome-
tries with negligible streamline curvature.

Extremes of fluctuating wall shear stresses and wall normal
pressure fluctuations have been quantified and found to be signif-
icantly higher than the mean wall shear stress. This requires con-
sideration when considering damage probability of protective
films on surfaces. As for non-rotating geometries with negligible
streamline curvature, no wall shear stress reversals were detected.
The fluctuating pressure field was found to be correlated over lar-
ger lengths than the fluctuating velocities.

For flow modelling purposes it has been shown that the turbu-
lent kinetic energy is a good approximation to the total wall shear
stress fluctuation energy. This will allow the latter to be predicted
by turbulence models, if these predict the turbulent kinetic energy
within the wall region with good accuracy. Corrosion models based
on total wall shear stress are then feasible without having to resort
to direct numerical simulation of high Schmidt number flows to
obtain corrosion predictions. As these models rely on the assump-
tion that the diffusion layer lies within the viscous sublayer with
linear velocity profile, probability density distributions at various
y+ are given to show that velocity profiles are indeed linear within
the region of y+ < 5.
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